“Tutorial Input”—Standardizing the
Computer/Human Interface

A. |, Zygielbaum

Communications Systems Research Section

This article describes a new technique for implementing a human/computer
interface for computer-based subsystems for the DSN. Known as “tutorial input,”
this technique provides convenient short input procedures for the experienced
operator and a helping hand for the novice. From the programmer’s viewpoint,
the technique is implemented in a compact, modular, easily modified table-driven
structure. The technique has been successfully used through two generations of

R&D ranging machines.

I. Motivation

Though much time is spent by programmers in pro-
ducing efficient, clean, and ego-pleasing code, very little
time is spent in developing an efficient, reliable human/
computer interface. From an operational standpoint, this
interface is the most important and least understood in
DSN subsystem programming. With a view toward mini-
mizing operator error and increasing subsystem efficiency,
this article will present the technique for human/com-
puter communication successfully used in two genera-
tions of R&D ranging systems.

In a typical subsystem program, the operator must
provide operating parameters, critical times and perhaps
limits to the software. Two interface techniques are
generally used. With the first technique the operator may
be queried on an input-by-input basis. For instance,’

'Computer typeouts are underlined.

78

ENTER T1: »
26

ENTER T2: 2
15

ENTER T3: 3
15

A second technique is the preset format wherein the
operator must enter numbers in accordance with some
specified template. An analogous entry to the one given
above could be

*/26/15/15%
The first technique has the advantage that a format
need not be memorized or followed. Given the parame-

ters, an operator just follows directions. The disadvantage
is that at the 10 characters per second of the usual tele-

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

typewriter, the questions sometimes waste an unaccept-
able amount of time. The second technique is clearly
faster but requires a thorough a priori knowledge of the
format. This leads to increased training time and a
greater chance of operator error from misplaced fields.

Overriding the problems and tradeoffs inherent in these
techniques is the multitude of programs involved in a
tvpical DSN operation. An operator may have to com-
municate with a variety of programs, each designed with
a different input philosophy and format. This situation
naturally leads to an increased probability of human
€TTOT.

In a real-time mission environment, an incorrect pro-
gram entry can be just as disastrous as an equipment
malfunction. A specific example occurred to ranging
during the Mariner Mars 1971 (MM’71) mission. The soft-
ware for command and telemetry running on the XDS 920
Telemetry and Command Processors (TCPs) used a
dollar sign for a line terminator, whereas the software for
the Mu ranging system used a carriage return. On at least
two occasions, range data were lost because the operator
typed a dollar sign at the end of an input line and walked
away thinking his task complete. The ranging software
waited the time-out period and then cancelled the neces-
sary input. A simple modification to the software to allow
it to recognize both a dollar sign and carriage return as
a terminator saved a significant amount of data.

Il. Proposal

Usually the subsystem operator is treated as a button-
pusher who is taught to run specific software and devices.
This view was believed incorrect, and software to support
both the Mu-I and Mu-II ranging systems was developed
with the dircct cooperation and interaction of the oper-
ators. The input routine devised in this effort has been
shown to be easy to learn as well as easy to operate. It
uses a table-driven structure which makes it highly visible
to the programmer who must implement it and relatively
easy to modify and enlarge. This algorithm, known as
“tutorial input,” is presented here.

HI. Tutorial Input as Viewed by an Operator

There are basically two parts to an input using the
“tutorial” technique. First, a command is typed to desig-
nate the type of entry; second, the parameter or parame-
ters are entered. For clarity, consider the commands used
with the Mu-II system given in Table 1. (Parameter
definitions are given in Table 2 for completeness.)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

To input commands and data, the operator first notifies
the PDP 11/20 that command input is desired by press-
ing an interrupt button (this could be a breakpoint on the
XDS 9-series machines). When the machine responds
with a pound sign (#) he types an input line terminated
with a carriage return. The first field is a command fol-
lowed by a slash (/). If the command is acceptable, the
softwarc looks to see if anything else is in the input line.
If more characters have been typed, they are used. If not,
the operator is queried by a specific message for the
appropriate parameter of the now-active command. This
is true every time a field containing a command or pa-
rameter has been used. If more characters are in the input
line, they are processed; if not, and more parameters arc
required, the operator is queried.

The field delimiters used are a slash between a com-
mand and parameters and commas between multiple
parameters. Note that the whole line is used. This allows
commands to be entered contiguously.

The following are equivalent ways to initialize all
ranging parameters:

Example 1:
#A/)
TOF: 2
#1200 3
SYN FREQ: }
44.01234 2
T1, T2, T3, TC: 3
20,20,20,12
C1,C2,CN:
4,193 3
MODE: 3
-3

Example 2:
#A/1200,44.01234,20,20,20,12,4,19,3,- 2

Example 3:
#A/1200,44.01234,20,20,20 »
IC: 2
#12419 3
CN: 2
#3-5

79

Example 1 shows how the operator can be led through
the input parameters. In Example 2, an experienced oper-
ator has entered all parameters without software prompt-
ing. The operator in example 3, after losing his place, has
let the computer request the remaining required numbers.

Multiple commands mayv be entered on a single line.
In order to change the mode and number of components,
for instance, one could enter

#M/124,C/3,10,50 »
or

#M/124,C/ 3
C1,C2.CN: ?
#3530

The asterisk (*) entered for C2 causes the previous value
of C2 to remain unchanged.

A further provision to ease the operator’s task is error
correction. Input cancellation (control R—R*) results in
immediately exiting the input routine. Character deletion
(CY) causes the program to type <« and results in the
deletion of the last character entered into the string.
Character deletion may be used more than once, e.g., to
delete the last three characters so that they can be re-
typed. Line deletion (E*) deletes the line, upspaces, types
—, and allows the whole line to be retyped. Error cor-
rection can also be accomplished by use of the command
to change a particular parameter.

IV. Tutorial Input as Viewed by a Programmer

Although written in machine language for a PDP-11/20,
via the SAPDP Xerox Sigma 5 cross assembler (Ref. 1)
the routine is amenable to coding in another machine
language or in a higher level language such as BASIC or
FORTRAN. In this discussion the interaction of the input
routine with other real-time processors will not be cov-
ered. The Mu-II software required interfaces to a teletype
output routine and to a real-time scheduler. These topics
will be documented in a forthcoming article on the Mu-II
system software.

Though perhaps not meeting the letter of structured
programming, which is difficult, if not impossible, in a
real-time environment, tutorial input does realize all ad-
vantages normally claimed for structured programming.
Through the use of a table-driven technique, the input

80

sequencing and programming is straightforward, easily
modified, and simply documented.

The technique involves two tables. The first table is
the command list. Each entry in the list takes three words
in the Mu-II realization. There is one entry for each
command. The first word has the two characters of the
command, e.g., “A/” or “TF,” the second a pointer to a
word in the second table, and the third word a number
equal to the number of parameters to be entered with
the particular command.

The second table is the parameter list. Each entry in
this list takes four words. There is one entry for each
parameter. The first word of the entry contains the num-
ber of characters in the message associated with each
parameter, while the second contains the message loca-
tion. (The messages are the queries shown earlier, e.g.,
TOF: 2.) The third word gives the location of the decod-
ing subroutine (integer, floating point, etc.) to convert the
parameter’s ASCII character string to binary. The fourth
and final word contains the location of the destination for
the binary number. Figure 1 contains a listing of the two
tables in the Mu-1I software.

The algorithm which interprets these tables is described
structurally in Fig. 2 and in a detailed flow chart in
Fig. 3.

As an example of the algorithm, let us consider that a
command “T/” has been input and follow the algorithm
operation. Scanning the command list (Fig. 1), a match
is found (line 334) giving the parameter table location as
SCT1 and the number of parameters to be input as four,
The program looks to see if there are any more characters
in the input string. If not, the message TMSG, containing
14 characters, is typed as shown by the SCT1 entry in the
parameter list. If input already exists, the message is
skipped. In either case, the input parameter is processed
by INGR which is the integer decoding subroutine and
the result stored in IT1.

Thus far, one parameter has been processed and three
more are left. The program proceeds directly to the SCT2
entry in the parameter table and repeats the input pro-
cess. This continues until all parameters are entered.

Once again the algorithm checks to see if there are
more characters in the input stack. If there are none, the
routine exits. If there are more, the first field is used to
search the command stack as the program assumes that
another command is in the input string. The process goes
on until an error occurs or until the input line is exhausted.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

The input logic flow is readily observable by following
the driving tables. The tables are also a simple documen-
tation of the input sequences. The ease with which com-
mands and entries can be modified or deleted is shown
by a program change that occurred during the Mariner
Venus/Mercury 1973 (MVM73) mission.

As originally written, an operator could modify any
parameter or sct of parameters individually except for
time of flight (TOF). The only way to change this pa-
rameter was through the “enter all parameters” A/ com-
mand. As the mission proceeded, the TOF changed by
several seconds each day. It was obvious that going
through the entire initialization sequence to change TOF
was a waste of time. The decision was made to add the
TF/ command so that TOF could be changed individually.

Because of the table-driven structure, only three cells
were actually needed. These were, from Fig. 1, lines
346-348:

“TF” Command
SCTOF Parameter Table Pointer
1 Number of parameters to be entered.

This simple modification changed a tedious operation
into a trivial one.

V. Summation

Data will continue to be lost due to incompatibilities,
indeed contradictions, between input formats in various
DSN software systems. This coupled with the trend
toward smaller station operational crews, automation,
and the continued proliferation of minicomputers in the
DSN makes standardization increasingly important. The
algorithm presented herein is a candidate to aid in that
task.

A final comment, tutorial input has been used in rang-
ing software throughout the MVM’73 mission. It has
shown itself to be an easy-to-use as well as an easy-to-
learn input technique. The extra time taken to interact
with experienced ranging operators during its develop-
ment has been paid back many fold through simplified
training and the low probability of human error. This
programming effort clearly shows the value of bringing
the system operators into the software design process at
a very early stage. Many times the operators were able
to point out features which were not helpful and could be
discarded as well as request features which would sim-
plify their task. The success of the Mu-II system program-
ming is largely due to this cooperation between the
programmer and the system operators.

Reference

1. Erickson, D. E., “The SAPDP Program Set for Sigma 5 Assembly,” in The Deep
Space Network Progress Report, Technical Report 32-1526, Vol. VII, pp. 91-96,
Jet Propulsion Laboratory, Pasadena, Calif., Feb. 15, 1972.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

81

82

Table 1. Mu-1l commands

Command Parameter to be entered
A/ All operational parameters:
TOF, SYN FREQ, T1,T2,T3,TC,C1,C2,CN,MODE
TF/ TOF
C/ C1,C2,CN
T/ T1,T2,1T3,TC
S/ SYN FREQ
M/ MODE
zZ/ Requested T@ time
Y/ Typewriter printout ON/OFF: ie., Y/ON
Y/OFF
Table 2. Parameter definitions
Abbreviation Meaning
TOF Round-trip light time
SYN FREQ Exciter synthesizer frequency
T1 First component integration time
T2 Lower-frequenry components integration time
T3 Post-acquisition DRVID integration time
TC 10-MHz calibration integration time
Cl Highest-frequency component
C2 Lowest-frequency component
CN Number of post-acquisition DRVID points
before automatic reacquisition
MODE Select configuration
(i.e., Block III or IV receiver phasing, reac-
quisition with or without coder sync, etc.)
“.” results in standard configuration
TQ Coder synchronization time

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

SUPER MU 11

328« o1 007B2 2 C1

PAGE
*»COMMAND LIST

0100782 3 AF
gg?« 0100783 1EFA

01 00783 2
*« 0l 007B4 4
01 007B4 1 AF
332« 01 007B4 2 1F2a

B33 017G07BS T 0
334e 0100785 2 D4
b Q% 00788 3 aF

Zr ¥

CBNSCAN BYTE B13011,01257) A/

WERD screr
 WARD 1 .

BYTE 813031,812871 C/
WBRD scC1

TWERD 3

BYTE 8132,1,812871 1 1y

* 0786 1FQa
336+ 01 007B& 2 0004
337+ 01 00787 D3

“WBRD SCTY
WBRD 4
BYTE 913231,812571 S/

|

T &F
338s 0l 0O7B7 2 1F02
339« 0l po7B8 0004

WARD . SCSYNF
WORD 1

3¥0% ClI UU7BR 2 DA
01 00788 3 aF
341« 01 00789 1F4A

BYTE 813327,812871 i/
WBRD scTo

TOIEETE T000Y
343% 01 007BA co
0L-QO7BA L. &F

WERD 1
BYTE 8'315t,812570 M/

34%% 01 DO/BA 2 F&2
345« 0l 00788 0001
346« 01 007B8 2 D4

WORD SCEMCE
WBRD 1

347+ 0L 007BC 1EFA
348% . 017007BC 2 0003

P ZEr e Ze 22T > 2 B

BYTE §13241,81306¢ TF

"WSRD SCTBF
WORD

i i ;
CBNEND BYTE 8733{T,872571 Y/

0l 007BD 1 AF A
350% Q1 GO7BD 2 1FS2 N WARD TYCMD
P 3 [of¢a5 SETE gy TWORD T
352 PAGE
353% #PARAMETER L1ISTY
354% 01 007BE 2 0006 $CTBF _ WBRD 6 _
® 1FEA WaRD TaFMgh
356a. 0100785 2 18F0 WBRD INGR
WORD, 11BF

357+ .01 007Co 2872

* 007C0 2 000¢
359+ 01 o07C! 1F60
360+ 01 007C1 2 1C3E

SCSYNF WBRD 14
WORD SYNFMSG
WBRD INDPFP

: * 7 2874
368+ .01 007CR 2 000

TWERDTTTUYEYNET T T T LT

T8CTL WORD 14

363 01 00708 1F&E
AL z

365« 01 007C4 2864
366+ 01 007C4 2 0QOB

WBRD TMBG
1BF0 WeRD INGR
WBRD 171

SCT2 WARD é

j

T po7Cs. . IVER
388e 01 007CS 2 1BF0

WBRD TEMSG
WORD INGR
i WeRD 112

369+ 01 007Cé - 2866

% 3 3
371« 01 007C7 1FBé
372% ol 007€C7 2 1BFo

37%s. .01 0O7C8 2 - 0006
375+ 0] D075 fFRC

j

f

.Z’ZZZ)ZZZ»ZZZDZZZDEZZ)

5CT3 WORD é
WBRD T3IMSG

WBRD INGR
WERD T IR
[

SCTC- " WARD
i NeRD . oreMEg

377+ 0l 007CA 2B6A
378« 01 QO7CA 2 000E
| 380e 01 007CB 2 1BFO
 38ls 0l 007Cc 2860
g P 0T 00T T 0006 —

|

WBRD TNGR

383+ 01 007CD 1Fce
384+ 01 007CD 2 1BFO

326« 0L 007CE & 0006
387« 01 007CF iFcs

38%% 01 00700 236E
390« 01 00700 2 0004

393y 01 00702 2879
- 39%« Dl .oo07D2 B 0COE
355« 01 00703 1F 94

336« 01l 00703 2 1Ds0
397« 01 007D4 288¢

. o
« 0l 0705
_ 159&792@3 (1G98

391« 01 007Dt 1F8A WORD mSa
TTTTE9ER ol o E 1CCo T N T T HeRD T INMBE

WBRD 17C
A $Cc1 WBRD 14
TR TTTWARD T CFEE
N WARD INGR
N WARD 1l
A SCCZ WORD]
N WBRD C2MS6
N WBRD INGR
LA SCCN - WBRD 8
N ; WARD enMen L
b
N WBRD 1CN
A SCMDE WBRD 10
N
N
N WORD I1MDE
A CWORD . 1k
N WBRD TOMSG
N WARD INTD

Fig. 1. Mu-ll software listing

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

83

84

Command, IF command request DO.
Save current parameters.
Input line.
DO UNTIL input stack empty.
Separate next input field.
Search command table for match.
IF NOT match.
Notify operator.
EXIT command.
ELSE.
Location = command table (match +1).
Count = command table (match +2).
Parameter, DO UNTIL count = 0,
If input stack NOT EMPTY .
Separate next input field.
ELSE

Print parameter table (location) characters from

string addressed by parameter table (location +1).
Input line.
Location « location +2.
DO SUBRQUTINE addressed by parameter table (location).
Location = location *+1.
Store result in parameter addressed by parameter table (location)
Location = location +1.
Count = count -1
END
END

END

Fig. 2. Structured representation

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

PUSH BUTTON~—Z-#]

INTERRUPT ROUTINE

n
w

COMMAND INPUT

COPY CURRENT
PARAMETERS TO
TEMPORARY STACK

(—

SET COMMAND
POINTER TO FIRST
COMMAND TABLE
LOCATION

INPUT —RETURNS ONE FIELD

IS INPUT FIELD
EQUAL TO COM-
MAND TABLE (COM-~
MAND POINTER) ?

COMMAND POINTER
-— COMMAND
POINTER + 3

COMMAND POINTER
>TOP OF TABLE?
YES

"NO SUCH COM~
MAND" TO OQUTPUT
LIST

INCREMENT
COMMAND
POINTER

:

PARAMETER POINTER
~— COMMAND
TABLE (COMMAND
POINTER)

:

INCREMENT
COMMAND
POINTER

:

COUNT == COM-~
MAND TABLE
(COMMAND
POINTER)

NO { IS INPUT

:

INCREMENT PARA=
METER POINTER

STACK EMPTY ?

TEMP -— PARAMETER
TABLE (PARAMETER
POINTER)

:

INCREMENT PARA~
METER POINTER

TYPE
QOPERATOR
QUERY

7/

7/

MOVE TEMP ASClI
CHARACTERS START~
ING IN THE LOCA=-
TION GIVEN BY
PARAMETER TABLE
(PARAMET ER POINTER)
TO OUTPUT LIST

INCREMENT PARA-
METER POINTER

ANY ERROR
FLAGS SET?

/THESE SUBROUTINES ARE
ASCI! TO BINARY CON~-
VERTERS OR SPECIALIZED
CONTROL ALGORITHMS

GO TO SUBROUTINE
GIVEN BY PARAMETER
TABLE (PARAMETER

POINTER) TO PROCESS
INPUT FIELD

“INPUT ERROR" TO

QUTPUT LIST

INCREMENT PARAM-
ETER POINTER

|

!

STORE SUBROUTINE
RESULT IN TEMPO-
RARY STACK LOCA-
TION GIVEN BY
PARAMETER TABLE
(PARAMETER POINTER)

COUNT
-— COUNT -1

IS COUNT =07

INCREMENT PARAM- NO

ETER POINTER

YES

1S INPUT STACK
EMPTY?

COPY TEMPORARY
STACK TO CURRENT
PARAMETERS

EXIT

Fig. 3. Tutorial input schematic flowchart (Mu-ll realization)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

85

IS INPUT
STACK EMPTY ?
YES

CONNECT TELE-
TYPE AND LINK
TYINT TO THE

TELETYPE CHAR~
ACTER INTERRUPT

~RETURN TO @
7 FROM

INTERRUPT
ROUTINE

9

INPUT POINTER
-— START OF
INPUT STACK-]

RETURN

86

INCREMENT
INPUT POINTER

|

FIELD POINTER
=— INPUT FIELD
START LOCATION

TYINT

TYPEWRITER
CHARACTER
INTERRUPT

1S INPUT CHARACTER EQUAL TO:

£ R®

CARRIAGE

C
c OTHER | RETURN

rT

L

(tLL_

CLEAR INPUT STACK

FLUSH ONE CHAR-
ACTER FROM INPUT

1S INPUT STACK
(INPUT POINTER)
=, " OR an ?

INPUT FIELD (FIELD
POINTER) =— INPUT
STACK (INPUT
POINTER)

1S INPUT STACK
(INPUT POINTER)
= /9

YES

INCREMENT
FIELD POINTER

!

INCREMENT
INPUT POINTER

L

RETURN

STACK

i i

UPSPACE AND TYPE

0o O

PRINT " =

RETURN

¥

&

CANCEL INPUT

PUSH CHARACTER
TO INPUT STACK

EXIT COM-
MAND INPUT

NOTE: TIME-OUT NOT SHOWN
BY USE OF THE REAL-TIME
SCHEDULER AND A COUNTER
RESET BY THIS ROUTINE, A
MAXIMUM OF 15 SECONDS IS
ALLOWED BETWEEN CHARACTERS.
IF THIS PERIOD IS EXCEEDED, THE
COMMAND ROUTINE IS TERMINATED.

RETURN

I_J

PUSH TO INPUT
STACK

i

DISCONNECT
TELETYPE AND
INTERRUPT

TYPE

TYPE QUTPUT LIST

RETURN

TABLES

COMMAND TABLE

PARAMETER TABLE

"COMMAND" ~ASCII

NO. OF MESSAGE CHARACTERS

POINTER

MESSAGE LOCATION

NUMBER OF PARAMETERS

DECODING SUBROUTINE

TARGET LOCATION

Fig. 3 (contd)

JPL DEEP SPACE NETWORK

PROGRESS REPORT 42-23

